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Abstract

This paper deals with a robust subset selection procedure based on Hodges-

Lehmann estimators of location parameters. An improved formula for the estimated

standard error of Hodges-Lehmann estimators is considered. Also, the degrees of

freedom of the studentized Hodges-Lehmann estimators are investigated and it is sug-

gested to use 0.8n instead of n - 1. The proposed procedure is compared with the other

subset selection procedures and it is shown to have good efficiency for heavy-tailed

distributions.

Introduction

Many classical subset selection procedures based on sample means have been developed 0

under the assumption of normality. But, it is well known that the sample mean is very 0
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sensitive to the departures from normality. We thus want some robust procedures which

perform reasonably well over a wide range of underlying distributions and are insensitive

to gross errors.

Robust subset selection procedures have been developed by using either rank scores or

robust estimators. Subset selection procedures based on rank are investigated by Bartlett

and Govindarajulu (1968) and Gupta and McDonald (1970). But, a critical difficulty of the

procedures based on ranks is, in general, to find the least favorable configuration (LFC).

For example, in the procedure proposed by Bartlett and Govindarajulu (1968) the LFC is

not given by the equi-parameter configuration, which was proved by the counterexample of

Rizvi and Woodworth (1970). To tide over this difficulty, some procedures based on robust

estimators, such as sample medians, trimmed means, Huber's M-estimators and Hodges-

Lehmann estimators, are considered. Some important contributions in the subset selection

procedures based on sample medians have been made by Gupta and Leong (1979), Gupta

and Singh (1980), Lorenzen and McDonald (1981) and Gupta and Sohn (1987) for several

distributions. Subset selection procedures based on trimmed means have been proposed

and studied by Song, Chung and Bae (1982) and Song and Kim (1984). Lee (1985) has

considered a procedure based on Huber's M-estimators.

It is well known that under some regularity conditions, the Hodges-Lehmann (H-L)

estimator derived from the Wilcoxon signed-rank test is an unbiased estimator of the loca-

tion parameter and is robust with respect to contaminations and heaviness of distribution

tails. Hence some subset selection procedures based on H-L estimators have been consid-

ered. Gupta and Huang (1974) have proposed some procedures based on one-sample H-L

estimators assuming that the populations have a common known variance. For a two-

way layout problem, Gupta and Leu (1987) have proposed an asymptotic distribution-free

subset selection procedure based on H-L estimators. For the case of unknown variance,

Song, Chung and Bae (1982) have studied the subset selection procedure based on the H-L

estimators derived from the Wilcoxon signed-rank test. They used the median absolute

deviation (MAD) to estimate the standard error of the H-L estimators. But, as pointed

out by them, their proposed rule significantly violates the P-condition in heavy-tailed
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distributions since the MAD usually underestimates the standard error of the H-L estima-

tors in heavy-tailed distributions. To overcome this violation, Song and Kim (1987) have

developed a subset selection procedure based on the H-L estimators with the A-estimator

which is an estimator of the standard error of the H-L estimator.

The purpose of this paper is to propose a robust subset selection procedure for the

location parameter based on the H-L estimators. To derive a selection procedure we use a

modified Sievers and McKean's (1986) estimator of the standard error of the H-L estimator

rather than the A-estimator. Section 2 deals with a studentization of the H-L estimators.

In Section 3, a subset selection procedure is proposed and compared with the other subset

selection procedures through a small-sample Monte Carlo study. The results of the Monte

Carlo study show that the proposed procedure is successful in satisfying the P*-condition

and also robust with respect to the heaviness of distribution of tails.

2 Studentizing Hodges-Lehmann Estimators

2.1 Estimation of the asymptotic standard error of Hodges-

Lehmann Estimator

Let X 1,..., X, be a random sample from a continuous and symmetric distribution F(x O)

with a location parameter 0 and density function f(x-0). Under the regularity conditions,

see Randles and Wolfe (1979) for details, the Hodges-Lehmann (H-L) estimator of 0 based

on the Wilcoxon signed-rank test is

0 = medq{(X, + X,)/2}

and the asymptotic standard error arH of 0 is

H = l/(V Jf((x)dz). (2.1.1)

Using the fact that oH = 7raY/3n in the case of mormal distribution, Song and Kim

(1987) proposed an estimator 6s of 0 H

6s = ir/3nSb (2.1.2.)

3



where Sb is a biweight A-estimator of scale LT introduced by Lax (1985).

In (2.1.1), let y = f f 2 (x) dx. Then the asymptotic standard error of the H-L estimator

is proportional to -'. There are some ways to estimate '-y1 . Lehmann (1963) proposed a

consistent estimator of -y 1 based on the length of a distribution-free confidence interval

for 0. Sievers and McKean (1986) proposed an estimator of "-' based on the difference

between two ordered pairwise differences and showed that their estimator is consistent for

both asymmetric and symmetric distributions. Sievers and McKean's estimator is given

by

1-

where t= is the ath quantile of 6,,(t), the empirical distribution function of the positive

pairwise differences, that is,

2 ZI( Xi - xI t).
n(n - 1) < X

Therefore the standard error of can be estimated by

1 ,-1 (2.1.3)

In the choice of the quantile a, Sievers and McKean (1986) recommended a = 0.8.

But, as pointed out by Sievers and McKean (1986), the estimate &H in (2.1.3) require

small sample corrections. Hence, in order to check the bias of the estimated standard error

OH, a Monte Carlo study was performed. To find empirical values of &H in (2.1.3), 1000

pseudo-random samples of size 10, 20 and 30 were generated from the normal, double

exponential, contaminated normal, Cauchy, exponential, lognormal and skewed contami-

nated normal distributions. The subroutines GGNML, GGCAY, GGEXN and GGUBS in

IMSL and inverse integral transformation were used. The cdf of contaminated normal and

skewed contaminated normal distributions are given by

F(x) = (1 - c)l (x) + v(x/c) and F(x) = (1 - E)t(x) + Et((x - a)/c),

respectively. The computations in this Monte Carlo study were carried out in double

precision arithmetic on VAX-11/780 at Department of Statistics, Purdue University.
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For a generated sample of size n, the values of &H in (2.1.3) were computed for different

values of the quantile a. This process was repeated 1000 times for each values of n = 10,

20 and 30. The averages of these 1000 values of &H are summarized in Table 2.1.

The results in Table 2.1 show that 6H in (2.1.3) significantly overestimates the standard

error of 0. Hence some corrections are required. In fact, Sievers and McKean (1986)

considered the standard least squares corrections for small sample, namely,

6L = (fl-1)?U3H. (2.1.4)

But, as shown in Table 2.1, &L also overestimates the standard error of 0. Thus, to improve

the behavior of 6H in (2.1.3), we considered the following estimated standard error of

which is a slight modification of &H:

&M= (f-2)/n&H. (2.1.5)

The results in Table 2.1 show that the modified standard error aM performs better than

&H and 1L. Also, unlike Sievers and McKean's suggestion, the value a = 0.5 produced

good result in our study.

2.2 Studentization of Hodges-Lehmann Estimators

After the works of Tukey and McLaughlin (1963) and the conjectures of Huber (1970), some

contributions in the studentization of robust estimators, especially M-estimators, have

been made by Leone, Jayachandran and Eisenstat (1967), Gross (1973), Shorack (1976)

and Lee(1985) for various 0-functions. Recently, Song and Kim (1987) have considered a

studentization of H-L estimators with biweight A-estimator of scale. The above researches

are successful although the formulas of the number of degrees of freedom are unsound. The

general philosophy of the studentization of robust estimators has been discussed by Huber

(1970, 1981).

We now want to approximate the distribution of the quotient

0 
(2.2.1)
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Table 2.1

A Comparision of the Asymptotic Standard Error aH

and Estimated Standard Errors 8 of

Based on 1000 Replications.

(a) Normal Distribution

n OH a &H &L am

0.5 0.3824(0.0049) 0.3627(0.0046) 0.3420(0.0044)

0.6 0.3710(0.0043) 0.3520(0.0041) 0.3319(0.0038)

10 0.3236 0.7 0.3662(0.0039) 0.3474(0.0037) 0.3275(0.0035)

0.8 0.3618(0.0035) 0.3433(0.0033) 0.3236(0.0031)

0.9 0.3597(0.0033) 0.3413(0.0031) 0.3218(0.0030)

0.5 0.2476(0.0020) 0.2413(0.0019) 0.2349(0.0019)

0.6 0.2446(0.0018) 0.2384(0.0018) 0.2321(0.0017)

20 0.2288 0.7 0.2429(0.0017) 0.2367(0.0017) 0.2304(0.0016)

0.8 0.2425(0.0017) 0.2364(0.0016) 0.2301(0.0016)

0.9 0.2429(0.0015) 0.2367(0.0015) 0.2304(0.0015)

0.5 0.1955(0.0012) 0.1922(0.0012) 0.1889(0.0011)

0.6 0.1943(0.0011) 0.1911(0.0011) 0.1877(0.0011)

30 0.1868 0.7 0.1940(0.0011) 0.1908(0.0010) 0.1875(0.0010)

0.8 0.1940(0.0010) 0.1908(0.0010) 0.1875(0.0010)

0.9 0.1947(0.0010) 0.1914(0.0010) 0.1881(0.0009)

Note: The numbers in parentheses are the estimated standard errors of O
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Table 2.1 (continued)

A Comparision of the Asymptotic Standard Error aH

r.nd Estimated Standard Errors & of

Based on 1000 Replications.

(b) Double Exponential Distribution

n CH a 0 L 1rL O

0.5 0.4588(0.0068) 0.4353(0.0065) 0.4104(0.0061)

0.6 0.4502(0.0061) 0.4271(0.0058) 0.4027(0.0054)

10 0.3651 0.7 0.4488(0.0056) 0.4257(0.0053) 0.4014(0.0050)

0.8 0.4503(0.0054) 0.4272(0.0051) 0.4027(0.0048)

0.9 0.4580(0.0051) 0.4345(0.0049) 0.4096(0.0096)

0.5 0.2883(0.0028) 0.2810(0.0027) 0.2735(0.0026)

0.6 0.2869(0.0026) 0.2796(0.0026) 0.2722(0.0025)

20 0.2582 0.7 0.2862(0.0025) 0.2790(0.0024) 0.2716(0.0023)

0.8 0.2879(0.0024) 0.2806(0.0023) 0.2731(0.0022)

0.9 0.2929(0.0023) 0.2855(0.0022) 0.2778(0.0022)

0.5 0.2243(0.0017) 0.2205(0.0016) 0.2167(0.0016)

n.6 0.2238(0.0016) 0.2200(0.0016) 0.2162(0.0015)

30 0.2108 0.7 0.2241(0.0015) 0.2203(0.0015) 0.2165(0.0015)

0.8 0.2256(0.0015) 0.2218(0.0015) 0.2179(0.0014)

0.9 0.2285(0.0014) 0.2246(0.0014) 0.2207(0.0014)

Note: The numbers in parentheses are the estimated standard errors of 6
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Table 2.1 (continued)

A Comparision of the Asymptotic Standard Error CH

and Estimated Standard Errors & of

Based on 1000 Replications.

(c) Contaminated Normal Distribution ( c = 0.1, a = 5)

n OH OH &L am

0.5 0.4513(0.0063) 0.4281(0.0060) 0.4036(0.0057)

0.6 0.4408(0.0056) 0.4182(0.0053) 0.3943(0.0050)

10 0.3754 0.7 0.4439(0.0053) 0.4211(0.0051) 0.3970(0.0048)

0.8 0.4558(0.0055) 0.4324(0.0052) 0.4077(0.0049)

0.9 0.4891(0.0066) 0.4640(0.0062) 0.4375(0.0059)

0.5 0.2846(0.0025) 0.2774(0.0025) 0.2700(0.0024)

0.6 0.2828(0.0023) 0.2756(0.0023) 0.2683(0.0022)

20 0.2655 0.7 0.2823(0.0022) 0.2752(0.0022) 0.2678(0.0021)

0.8 0.2842(0.0022) 0.2770(0.0022) 0.2697(0.0021)

0.9 0.3020(0.0023) 0.2944(0.0023) 0.2865(0.0022)

0.5 0.2265(0.0016) 0.2227(0.0016) 0.2188(0.0015)

0.6 0.2260(0.0015) 0.2222(0.0015) 0.2183(0.0015)

30 0.2168 0.7 0.2264(0.0015) 0.2226(0.0014) 0.2187(0.0014)

0.8 0.2280(0.0015) 0.2242(0.0014) 0.2203(0.0014)

0.9 0.2339(0.0015) 0.2300(0.0014) 0.2260(0.0014)

Note: The numbers in parentheses are the estimated standard error- of 5
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Table 2.1 (continued)

A Comparision of the Asymptotic Standard Error aH

and Estimated Standard Errors 8 of

Based on 1000 Replications.

(d) Cauchy Distribution

n aH a &H IL aM

0.5 0.7831(0.0162) 0.7429(0.0154) 0.7004(0.0145)

0.6 0.7882(0.0163) 0.7478(0.0154) 0.7050(0.0146)

10 0.5736 0.7 0.9072(0.0255) 0.8607(0.0242) 0.8114(0.0228)

0.8 2.0495(0.2120) 1.9443(0.2011) 1.8331(0.1896)

0.9 3.3322(0.4223) 3.1612(0.4006) 2.9805(0.3777)

0.5 0.4683(0.0055) 0.4564(0.0053) 0.4442(0.0052)

0.6 0.4722(0.0054) 0.4602(0.0053) 0.4479(0.0052)

20 0.4056 0.7 0.4910(0.0061) 0.4786(0.0060) 0.4658(0.0058)

0.8 0.5499(0.0091) 0.5360(0.0089) 0.5217(0.0086)

0.9 2.3775(0.2276) 2.3173(0.2218) 2.2555(0.2159)

0.5 0.3627(0.0034) 0.3566(0.0034) 0.3504(0.0033)

0.6 0.3658(0.0034) 0.3596(0.0033) 0.3534(0.0033)

30 0.3312 0.7 0.3747(0.0036) 0.3684(0.0035) 0.3620(0.0035)

0.8 0.4025(0.0043) 0.3958(0.0043) 0.3889(0.0042)

0.9 0.6102(0.0184) 0.5999(0.0180) 0.5895(0.0177)

Note: The numbers in parentheses are the estimated standard errors of

9



Table 2.1 (continued)

A Comparision of the Asymptotic Standard Error aH

and Estimated Standard Errors 6 of

Based on 1000 Replications.

(e) Exponential Distribution

n OH a &H &L aM

0.5 0.2483(0.0034) 0.2356(0.0033) 0.2221(0.0031)

0.6 0.2519(0.0033) 0.2389(0.0032) 0.2253(0.0030)

10 0.1826 0.7 0.2591(0.0031) 0.2458(0.0029) 0.2318(0.0028)

0.8 0.2692(0.0031) 0.2554(0.0029) 0.2408(0.0028)

0.9 0.2956(0.0035) 0.2804(0.0033) 0.2644(0.0031)

0.5 0.1526(0.0014) 0.1488(0.0013) 0.1448(0.0013)

0.6 0.1551(0.0013) 0.1511(0.0013) 0.1471(0.0013)

20 0.1291 0.7 0.1593(0.0013) 0.1552(0.0013) 0.1511(0.0012)

0.8 0.1649(0.0013) 0.1607(0.0013) 0.1564(0.0012)

0.9 0.1762(0.0013) 0.1717(0.0013) 0.1672(0.0013)

0.5 0.1186(0.0009) 0.1166(0.0008) 0.1146(0.0008)

0.6 0.1202(0.0008) 0.1182(0.0008) 0.1162(0.0008)

30 0.1054 0.7 0.1227(0.0008) 0.1206(0.0008) 0.1185(0.0008)

0.8 0.1266(0.0008) 0.1245(0.0008) 0.1223(0.0008)

0.9 0.1338(0.0009) 0.1316(0.0008) 0.1293(0.0008)

Note: The numbers in parentheses are the estimated standard errors of 6
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Table 2.1 (continued)

A Comparision of the Asymptotic Standard Error aH

and Estimated Standard Errors & of 8

Based on 1000 Replications.

(f) Lognormal Distribution

n C"H a aH am

0.5 0.3379(0.0056) 0.3206(0.0053) 0.3022(0.0050)

0.6 0.3467(0.0056) 0.3289(0.0053) 0.3101(0.0050)

10 0.2520 0.7 0.3734(0.0062) 0.3543(0.0059) 0.3340(0.0055)

0.8 0.4108(0.0071) 0.3897(0.0067) 0.3675(0.0063)

0.9 0.4920(0.0103) 0.4668(0.0098) 0.4401(0.0092)

0.5 0.2043(0.0020) 0.1992(0.0020) 0.1939(0.0019)

0.6 0.2073(0.0020) 0.2020(0.0020) 0.1967(0.0019)

20 0.1782 0.7 0.2151(0.0020) 0.2096(0.0020) 0.2040(0.0019)

0.8 0.2274(0.0022) 0.2216(0.0021) 0.2157(0.0021)

0.9 0.2791(0.0036) 0.2720(0.0035) 0.2647(0.0034)

0.5 0.1587(0.0013) 0.1560(0.0013) 0.1533(0.0012)

0.6 0.1611(0.0013) 0.1584(0.0012) 0.1556(0.0012)

30 0.1455 0.7 0.1650(0.0013) 0.1623(0.0012) 0.1594(0.0012)

0.8 0.1735(0.0013) 0.1706(0.0013) 0.1676(0.0013)

0.9 0.1954(0.0017) 0.1921(0.0017) 0.1887(0.0016)

Note: The numbers in parentheses are the estimated standard errors of 6
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Table 2.1 (continued)

A Comparision of the Asymptotic Standard Error OH

and Estimated Standard Errors 6 of

Based on 1000 Replications.

(g) Skewed Contaminated Normal Distribution ( c = 0.18, o = 13.5, a - 1.9)

n 0 H a &H &L am

0.5 0.8004(0.0228) 0.7594(0.0217) 0.7159(0.0204)

0.6 0.9525(0.0316) 0.9036(0.0300) 0.8520(0.0282)

10 0.4588 0.7 1.4783(0.0412) 1.4025(0.0391) 1.3223(0.0369)

0.8 1.8297(0.0418) 1.7358(0.0396) 1.6365(0.0374)

0.9 2.5759(0.0514) 2.4437(0.0487) 2.3040(0.0460)

0.5 0.3872(0.0055) 0.3774(0.0054) 0.3674(0.0052)

0.6 0.4603(0.0092) 0.4487(0.0090) 0.4367(0.0087)

20 0.3244 0.7 0.6297(0.0143) 0.6138(0.0140) 0.5974(0.0136)

0.8 0.8624(0.0179) 0.8405(0.0174) 0.8181(0.0169)

0.9 1.2930(0.0171) 1.2602(0.0167) 1.2266(0.0163)

0.5 0.2961(0.0028) 0.2911(0.0028) 0.2860(0.0027)

0.6 0.3224(0.0044) 0.3170(0.0043) 0.3114(0.0042)

30 0.2649 0.7 0.4107(0.0070) 0.4038(0.0069) 0.3967(0.0068)

0.8 0.5962(0.0096) 0.5862(0.0095) 0.5760(0.0093)

0.9 0.8894(0.0105) 0.8744(0.0103) 0.8592(0.0102)

Note: The numbers in parentheses are the estimated standard errors of
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by a t-distribution with appropriate degrees of freedom where 0 is the H-L estimator of

0 and &M ,defined in (2.1.5), is an estimated standard error of e. Huber (1970) suggested

a method to determine an equivalent number of degrees of freedom by the asymptotic

distribution of a consistent estimator of the asymptotic variance arH. He conjectured that

the degrees of freedom are (2/C)n with

C--=16 f f 3(x ) d x  -1

For the normal distribution, 2/C = 0.808 which motivate us to consider the degrees of

freedom in the subset selection procedures based on the H-L estimators with the estimated

standard error &M defined in (2.1.5).

To check the goodness-of-fit of the studentized H-L estimator (2.2.1), we performed a

small-sample simulation study. For each sample of size n = 10 and 20, three cases of the

degrees of freedom, that is, n - 1, n - 2 and 0.8n, are considered. To drive comparative

studentization, we included the studentization of the sample means with usual sample

standard deviation, H-L estimator with &H defined in (2.1.3) and H-L estimator with ars

defined in (2.1.2). That is, in our simulation we included the following six studentizations:

T1 Sv/ with df=n-1; T 2 --- with df=n-1;

T - ith df = n - 1; T2 - with df =n - 1;

T 3  - with df =n-1; T4  - with df= n-i1;

T 5  -0 with df =n-2; T6 - with df= 0.8n;
VM am

where X is the sample mean and S is the usual sample standard deviation. And the other

notations are as defined in Section 2.1. Note that T"5 = T6 for sample size n = 10.

For each distribution of the normal, double exponential, contaminated normal and

Cauchy the simulation was repeated 1,000 times with sample of size n = 10 and 20. The

probabilty P(T > t(L,p)) is estimated by the number of values exceeding t(V,p) divided

by 1,000 , where t(V,p) is the 100(1 - p) percentile of the t-distribuion with v degrees of

freedom and T is one of the quotients mentioned above. These estimated probabilities are

summarized in Table 2.2.
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The results in Table 2.2 show that the t-distribution approximation of the quotient T6,

H-L estimators with bM and the degrees of freedom Y = 0.8n, is good. If the underlying

distribution is normal, T, and T2 gave good results. However, in the heavy-tailed distri-

butions, T6 are better than T or T2. TrS and T6 gave almost the same results, however, the

usage of T6 looks slightly better than T5.

3 A Robust Procedure Based on Hodges-Lehmann

Estimator for Selecting the Best Location Parame-

ter

3.1 Subset Selection Procedures

Let r1 ,...,7r be k independent populations with cdf's F(;-f),..., F('), respectively,

unknown location parameters e, and a common unknown variance a 2. Let X1i,..., Xj,

be a random sample of size n from the population iri, i = 1,..., k. We assume that the

experimenter has no prior knowledge concerning the pairing of the 7ri with the jth ranked

value O[y ] of the 8j's , i = 1,...,k,j = 1,...,k. The goal of the experimenter is to select

the 'best' population associated with the largest location parameter O[k]. If more than one

population are best , we tag one of them and consider it as the 'best'.

Gupta (1956, 1965) has suggested the following subset selection procedure RG based

on the sample means.

Gupta's procedure (RG): Select 7ri if and only if

X'- IT maxx, X dS

where Xi is the sample mean of the ith population, d = d(k, n, P*) is chosen so as to

satisfy the P*-condition, and S 2 is the usual pooled sample variance with V = k(n - 1)

degrees of freedom.
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Table 2.2

Estimated Probability of P(T > t(v,p))

Based on 1,000 Replication

(a) Sample size n = 10

Distribution T p: 0.400 0.250 0.100 0.050 0.025 0.010 0.005

T,1 0.377 0.246 0.118 0.057 0.033 0.014 0.007

T2  0.392 0.240 0.115 0.058 0.035 0.016 0.007

Normal TS 0.369 0.208 0.090 0.053 0.030 0.013 0.008

T4 0.384 0.228 0.111 0.064 0.041 0.021 0.013

T6 0.384 0.227 0.109 0.064 0.036 0.018 0.011

T", 0.407 0.243 0.088 0.034 0.020 0.004 0.003

Double T2 0.380 0.221 0.065 0.027 0.013 0.005 0.003

Exponential T3 0.369 0.196 0.061 0.025 0.010 0.005 0.003

T4  0.383 0.226 0.080 0.039 0.016 0.009 0.005

T6 0.383 0.226 0.080 0.037 0.014 0.009 0.003

T, 0.428 0.261 0.091 0.041 0.020 0.007 0.004

Contaminated T2  0.380 0.227 0.089 0.047 0.021 0.009 0.006

Normal T3 0.375 0.205 0.081 0.046 0.017 0.008 0.004

(c = 0.1,-- 5) T 4  0.379 0.236 0.104 0.060 0.028 0.014 0.007

T6  0.379 0.234 0.102 0.056 0.025 0.011 0.005

T, 0.418 0.304 0.095 0.028 0.012 0.002 0.001

T2 0.389 0.236 0.079 0.033 0.011 0.002 0.000

Cauchy T3 0.387 0.216 0.070 0.037 0.014 0.004 0.002

74 0.402 0.241 0.091 0.049 0.025 0.009 0.004

T6 0.402 0.240 0.090 0.048 0.024 0.009 0.004

Note: For sample size n = 10, Ts = T6
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Table 2.2 (continued)

Estimated Probability of P(T _ t(v, p)) Based on 1,000 Replication

(b) Sample size n = 20

Distribution T p: 0.400 0.250 0.100 0.050 0.025 0.010 0.005

T1  0.402 0.239 0.097 0.053 0.031 0.008 0.003

T2 0.383 0.242 0.101 0.055 0.029 0.008 0.003

Normal TS 0.380 0.228 0.094 0.047 0.024 0.009 0.007

T4 0.387 0.241 0.103 0.057 0.027 0.013 0.008

TS 0.387 0.241 0.102 0.057 0.027 0.012 0.008

T6 0.387 0.241 0.102 0.056 0.026 0.011 0.008

T, 0.428 0.256 0.089 0.043 0.021 0.009 0.002

T2 0.407 0.212 0.064 0.028 0.015 0.005 0.002

Double TS 0.408 0.226 0.072 0.035 0.015 0.009 0.001

Exponential T4 0.416 0.236 0.080 0.040 0.017 0.010 0.003

T5 0.416 0.236 0.080 0.040 0.017 0.010 0.003

T6 0.416 0.235 0.080 0.040 0.017 0.010 0.003

T, 0.412 0.266 0.093 0.042 0.015 0.007 0.002

Contaminated T2 0.386 0.222 0.082 0.040 0.018 0.005 0.001

Normal Ts 0.386 0.229 0.094 0.041 0.018 0.007 0.004

( = 0.1,a - 5) T4 0.395 0.238 0.104 0.048 0.023 0.008 0.005

T5 0.395 0.238 0.104 0.047 0.022 0.008 0.005

T6 0.395 0.238 0.103 0.046 0.022 0.008 0.005

T, 0.413 0.318 0.104 0.037 0.012 0.004 0.002

T2  0.396 0.228 0.073 0.029 0.009 0.003 0.001

Cauchy T 0.404 0.244 0.096 0.045 0.023 0.008 0.004

T4  0.412 0.251 0.113 0.052 0.025 0.011 0.005

TS 0.412 0.251 0.113 0.052 0.024 0.011 0.004

Te 0.412 0.251 0.111 0.051 0.023 0.011 0.004
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If we assume that 7ri is a normal population, then the constant d is a solution of

fo 00 0 0 Ok-(u + dw)O(u)q,(w)dudw = P*(3.1.1)

where 0 and 4 are cdf and density function of standard normal distribution, respectively,

and q,(w) is density function of X,/V-. The values of d have been tabulated by Gupta

and Sobel (1957) and also by Gupta, Panchapakesan and Sohn (1985) (see p = 0.5 in this

paper) for various combinations of k, v and P*.

Since Gupta's procedure RG is based on the sample means and variances, it is sensitive

to extreme observations. We thus want some robust selection procedures which are insen-

sitive to outliers. As a robust procedure, Song and Kim (1987) have proposed the following

subset selection rule Rs based on the H-L estimators with the biweight A-estimators of

scale.

Song and Kim's procedure (Rs): Select 7ri if and only if

O, > max Oj - dbSb (3.1.2)
- -<j<k

where §i is the H-L estimator of Oi and Sb is the pooled sample estimated standard error

of the H-L estimator, that is, S2 = E, = a4s/k with &is defined in (2.1.2) for the ith

population. In (3.1.2), Song and Kim (1987) used d values of Gupta's procedure as given

by (3.1.1); they provide approximate values of db.

However, as shown in the above section, the modified standard error &M in (2.1.5) of the

H-L estimator § with the degrees of freedom v = 0.8n has a good behavior in the heavy-

tailed distributions. We thus want to propose an improved selection procedure based on

H-L estimators. The proposed selection procedure is as follows.

Proposed procedure (RM): Select 7ri if and only if

0, max 0.j- d.S,,, (3.1.3)-l<j<k

where &i is the H-L estimator of Gi and S.. is the pooled sample estimated standard error

of the H-L estimator, that is, S,,, == E 1 aiM/k with &iM defined in (2.1.5) for the ith

17
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population.

The constant d,, is also to be determined to satisfy the P*-condition. But, since the

distribution of 0 M and S.. are too complicated to determine d,,, the exact values of d, to

satisfy the P*-condition are not available. However, the results of the above section imply

that we may use the constants d in (3.1.1) for the constants d,, in (3.1.3) after changing

the degrees of freedom from k(n - 1) to k(0.8n) as the studies of Lee (1985) and Song and

Kim (1987).

3.2 An Empirical Study on the Procedures

This section treats the results of a Monte Carlo study to compare the three subset selection

procedures, Gupta's procedure RG based on the sample means, Song and Kim's procedure

Rs based on the H-L estimators with A-estimator for scale and the proposed procedure

RM based on the H-L estimators with modified estimated standard error and degrees of

freedom. The purpose of this Monte Carlo study is to compare the three procedures for

various underlying distributions including the normal, double exponential, contaminated

normal and Cauchy distributions.

To investicate the performance of the three procedures, equally-spaced -parameter case

is considered, that is,

8i = do + (i - 1)6o, i = 1,..., k

where b > 0 is a given constant and a is the standard deviation of each population. When

the distribution does not possess the second moment, the value of F-'(0.84) - F-1(0.5)

is used instead of the value of standard deviation. The constants used in our simulation

study are k = 5, n = 10. For the contaminated normal distributions, e = 0.1 and r = 5

are considered.

1,000 replications were performed for each value of bvf/' = 0, 2 and 4. When ,/-F = 0,

the average number of selected populations divided by 1,000 can be interpreted as the

empirical P*. These values are given in Table 3.1. The empirical results show that the

proposed procedure RM successfully satisfies the P*-condition for various distributions.
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Table 3.1

Empirical P* Based on 1,000 Replications

Distribution Rule P*: 0.750 0.900 0.950 0.975 0.990

R0.7424 0.8982 0.9498 0.9756 0.9902

Normal Rs 0.7448 0.9018 0.9536 0.9764 0.9894

RM 0.7914 0.9236 0.9658 0.9830 0.9918

Double RG 0.7552 0.8990 0.9510 0.9756 0.9882

Exponential Rs 0.7982 0.9308 0.9674 0.9830 0.9942

RM 0.8020 0.9240 0.9628 0.9836 0.9932

Contaminated RG 0.7484 0.9082 0.9552 0.9806 0.9940

Normal Rs 0.8050 0.9370 0.9730 0.9872 0.9952

OE = 0.1,a = 5) RM 0.7948 0.9286 0.9658 0.9828 0.9912

RG 0.6820 0.9066 0.9636 0.9832 0.9942

Cauchy Rs 0.8112 0.9234 0.9574 0.9756 0.9906

RM 0.7870 0.9074 0.9474 0.9684 0.9824

To compare the efficiencies of selection procedures, we use the following definition of the

relative efficiency of the procedure R, to the procedure R 2 suggested by Song and Oh

(1981):
eRR2) = E(SIR 2) P(CSIR1 )

,R)- E(SIRi) P(CSIR2)

where E(SIR) is the expected number of populations to be retained in the selected suset

for a given procedure R. To estimate the relative efficiency, empirical relative efficiencies of

RM relative to RG are computed from the number of times that each population is selected

in 1,000 replications. The results are summarized in Table 3.2.

The results in Table 3.2 show that the performances of the robust selection procedures

Rs and RM are satisfactory. For the normal distribution, Gupta's rule RG is better than Rs

and RM. However, the rules Rs and RM are quite robust with respect to contaminations

and heaviness of distribution tails. Also, we find that the rule RM is slightly better than

the rule Rs for heavy-tailed distributions.
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Table 3.2

Empirical Relative Efficiencies Based on 1,000 Replications

Distribution Efficiency 6 vf P*: 0.750 0.900 0.950 0.975 0.990

e(Rs,Rj) 2 0.985 0.973 0.967 0.971 0.966

Normal 4 0.984 0.980 0.981 0.969 0.970

e(RM, RG) 2 0.936 0.905 0.892 0.891 0.884

4 0.955 0.931 0.918 0.886 0.900

e(Rs, RG) 2 1.043 1.020 1.023 1.019 1.016

Double 4 1.018 1.025 1.001 0.999 1.020

Exponential e(RM, RG) 2 1.032 1.011 1.014 1.002 1.004

4 1.012 1.013 0.984 0.991 1.001

e(Rs,RG) 2 1.137 1.143 1.150 1.136 1.136

Contaminated 4 1.153 1.183 1.190 1.211 1.212

Normal e(RM, Rc) 2 1.142 1.158 1.169 1.148 1.145

4 1.166 1.183 1.190 1.211 1.212

e(Rs, Rc) 2 1.213 1.240 1.184 1.142 1.098

Cauchy 4 1.623 1.695 1.644 1.576 1.470

e(RM, RG) 2 1.265 1.295 1.241 1.182 1.127

4 1.670 1.785 1.727 1.659 1.546
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